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Introduction 

W n e d  s p c e  missions a r e  now moving beyond the i r  infancy and 

i n t o  an area of m r e  sophisticated ac t iv i t i e s .  Mercury experience 

is in hand, and ahead are Gemini, X-20, and A p l l o ,  each of which 

may be expected t o  contribute s ignif icant ly  to the advancement of 

technology fm manned entry vehicles. In anticipation of require- 

ments beyond these programs, we are led t o  inquire i f  each new 

s p c e  mission w i l l  continue t o  require a new entry vehicle. 

For a number of reasons, among which a re  includedthe several  

years that t ranspire  from conception t o  flight fo r  any new entry 

vehicle, the  acceleration thak could possibly be afforded manned 

space ac t iv i t i e s ,  and in interests  of economy, there would appear 
' 

t o  be a place i n  the future for a reusable, multipurpose, manned 

entry vehicle. 
b 

By multipurpose is meant that the vehicle would 

hopefully s a t i s f y  the essent ia l  requirements of a variety of missions, 

conceivably including not  only peaceful and sc i en t i f i c  endeavors, 

but -possible mil i tary applications as well. This is perhaps not 

as visionary as it nay first sound i f  there is acceptance of the 

idea of using an entry vehicle that, although it might not be 

idea l ly  su i ted  fo r  a particular mission, would be suf f ic ien t ly  

The author i s  indebted to E. B. Pritchard for his contributions and 

ass is tan ce . 
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versa t i le  .to do the- job without undue compromise t o  the  mission 

objectives. A well-founded choice of the  class of vehicle that 

is best su i ted  fo r  multipurpose use requires, i n  some respects, 

a more detailed definit ion of  future missions than is  currently 

available. But even should such information be i n  hand, it i s  too 

much t o  expect anything approaching universal agreement among the 

proponents of various entry vehicles i n  view of the  exis t ing dlver- 

gence of opinion exhibited f o r  specific, well-defined missions of t he  

past and present. There i s  recognition, of course, that i n  t he  spec- 

trum of foreseeable manned space ac t iv i t i e s ,  certain missions w i l l  

require specialized entry vehicles, even should a multipurpose vehi- 

cle become a rea l i ty .  

With these thoughts i n  mind, w e  will take a cursory look at 

some of the  factors  that might influence the design of a multi- 

purpose entry vehicle with the hope of indicating a general c l sss  

of entry vehicle that shows promise of affording this v e r s a t i l i t y  

without large penalties f o r  aerodynamic performance. 

An extensive survey of the  l i t e r a t u r e  was part of this s-kudy, 

as w i l l  be evident from the  compilation of data i n  some of the  

figures.  The list of references should be regarded as typica l  

ri _,her t h a n  exhaustive . 

lift coefficient CL 

drag coefficient cD 

Q deceleration, ear th  referenced 
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l i f t  -drag rat io  

entry mde involving pitch moduhtion i n  pullout (see text) 

heat load 

mximum heat r a t e  

nose radius 

radiative cooling as primary heat protection method 

reference area 

temperature 

entry mode having no pitch moduhtion i n  pullout (see text) 

velocity 

entry velocity 

weight 

flight-path angle 

entry angle 

difference i n  entry angle between undershoot and overshoot, 

i. e., corridor width 

Subscripts: 

l i m  l imiting value 

max m a x i m  value 

rad radiative heating 

conv convective heating 

A ablat ive 

R radiating metall ic 

e¶ radiation equilibrium 
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at L/D = o 
payload 

at VE = 26,000 f t / sec  

to t a l ,  i .e.,  radiative plus convective 

Discussion 

Entry Velocity 

IDW earth orb i t s  w i l l  continue t o  be a t t r ac t ive  t o  a number 

of future missions, such as the near-earth mmed space s ta t ion.  

High ear th  orbi ts ,  c i rcular  and highly e l l i p t i c ,  a re  receiving 

study fo r  both mili tary and exploratory objectives, wherein alti- 

tude f l e x i b i l i t y  may be desired from mission t o  mission. 

or apogee a l t i t ude  is  increasedto conform t o  these mission re-  

quirements, entry velocity may increase decidedly, as i l l u s t r a t e d  

i n  figure 1, approaching 34,000 f t / sec  at  the a l t i t ude  f o r  a 

24-hour orb i t .  

operations (about 0' t o  loo, as w i l l  be shown later)  i s  seen t o  have 

l i t t l e  effect  upon entry velocity, except wben o rb i t  o r  apogee 

a l t i t ude  is  within about 1000 miles or  less of the  earth. 

As orb i t  :-;. 

The range of entry angles of i n t e re s t  f o r  manned 

A t  escape velocity and beyocd we encounter t he  regime of lunar 

and planetary missions. 

minimum entry speeds t o  E a r t h  i n  return from Mars and Venus as a 

function of t r a n s i t  time . velocit ies at  l ea s t  as high as ahUi 

45,000 ft/sec a re  of i n t e re s t  because of the Large reduction i n  

return time afforded by small increases i n  velocity above the  minimum. 

Figure 2 presents the f a m i l i a r  picture of 

1 
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On t he  other hank, just i f icat ion f o r  veloci t ies  i n  the upper 

hyperbolic regime w i l l .  be more d i f f i cu l t  t o  come by unless there 

is a major breakthrough i n  propulsion systems, primarily because 

of the small decrease i n  return time associated with large and 

cost ly  increases i n  velocity. A more important question, perhaps, 

i s  w h a t  entry velocity can man endure without exceeding h i s  -- 
- 

deceleration tolerance. 

L/D = 03. 

An upper l i m i t  is  obtained by l e t t i n g  

This l imiting velocity is  shown i n  figure 3 as a function 

of the deceleration that is permitted. I n  the r e a l  case, the  entry 

velocity will have to  be less  than that given by th i s  curve. 

Clearly, i n  the absence of propulsive braking prior t o  entry, 

future manned space missions stimulate in t e re s t  i n  entry veloci t ies  

extending from circular  w e l l  i n t o  t he  hyperbolic regime. 
‘-2 

The a b i l i t y  

t o  enter over t h i s  range of velocit ies would be a most desirable 

feature of a multipurpose entry vehicle. 

has been selected along with the hypersonic l i f t -drag  r a t i o  as a 

primary variable i n  t h i s  review. 

E n t r v  Modes 

Accordingly, entry velocity 

The material  involving t ra jectory calculations tha t  is presented 

herein deals primarily with two entry modes. These two should serve 

the  purpose of this paper in bringing out sa l ien t  features of the 

environment and vehicle performance. 

I n  mode U entry is in i t i a t ed  with the vehicle i n  the  trimmed 

p s i t i v e  lift condition f o r  either (L/D)max o r  cL. (Use  of 

negative l i f t  i n  the initial entry phase is considered herein t o  be 
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1 

a procedure that is resorted t o  i n  emergency only.) A constant L/D 

t ra jec tory  i s  flown from entry to  pullout. 

vehicle is  ro l led  so as t o  maintain a constant a l t i t ude  flight path, 

A t  t h i s  point the 

including the  use of negative l i f t , $  i .e. ,  r o l l  o r  l i f t  vector 

modulation is assumed i n  this phase of the trajectory.  This maneu- 

ver i s  maintained u n t i l  the  vehicle is unable t o  generate su f f i -  

c ient  l i f t  to sustain fli&t at that particular a l t i tude .  An 

equilibrium glide maneuver a t  e i ther  (L/D)max o r  C h  i s  then 

i n i t i a t e d  and flown t o  t he  Landicg point. 

b 

The assumed l i m i t  on 

decelerations i s  12g. The overshoot cr i ter ion i s  a no-skip entry 

within one pass, and the use of negative l i f t  after pullout is  per- 

mitted. 

In mode M, the overshoot cri terion is  the same as for mode U. 

Otherwise, mode M employs pi tch modulation i n  pullout. I n  undershoot, 

p i tch  modulation is  employed once 12g i s  reached so as t o  maintain t h i s  

g level through CL = 0, and into the negative l i f t  phase u n t i l  nega- 

t i ve  ( I , / D ) ~ ~  i s  reached, following which roll modulation a t  constant 

a l t i t u d e  i s  employed. The remaining f l i gh t  i s  the  same as for mode U. 

In a l l  cases entry is  assumed t o  begin a t  b 0 , O O O  f e e t  and the  

ear th  i s  considered t o  be spherical and nonrotating. 

Simulator studies of mode U have indicated it t o  be feasible.  
- 

Mode M introduces additional complexities that have not been excer- 

c i sed  t o  t h e  same_e@ent, par t icular ly  that 3prtion of t h e  entry 

immediately after the  point fo r  CL = 0 during w h i c h  minor excursions 
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xce from the requ-red maneuver could introdu s ive deceleration. 

Otherwise mde M appears reasonable and should serve t o  demon- 

strate the influence of pitch moduhtrion during pullout. 

2 provides a summary of  p e r t i n e n t  guidance and control studies. 

Deceleration 

Reference 

Once the upper l i m i t  on permissible deceleration has been ~ 

fixed, there i s  a n a t u r a l  tendericy t o  exhibit l i t t l e  i n t e re s t  i n  

g-alleviation below th is  l i m i t  t h a t  may be derived from increased 

L/D. 

look a t  the deceleration picture. 

general trends of decelerations to  be experienced during entry (by 

node U)  is  presented i n  f igure 4. 

figure, peak g ' s  a r e  shown as a f'unction of e n t r y  angle f o r  two entry 

vehicles, one with an (L/D)max of 0.5 and the  &her with an (L/D),ax 

of 2 .  

curves for 46,000 f%/sec; t he  ~ a k  g's given by these curves a r e  those 

experienced during the  course of deceleration pr ior  t o  establishing the  

equilibrium glide. 

peak g becomes increasingly sensit ive t o  change i n  entry 

thus requiring close attention t o  possible sources of e r ror  i n  f l i g h t  

path angle j u s t  p r ior  t o  entry. For manned entry t h a t  employs atmos- 

pheric braking only, entry angle will be l imited t o  something between 

0' and about 10'. 

Nevertheless, it is instruct ive t o  take a somewhat broader 

An indication of t he  scope and ' 

In the  left-hand side of the 
r 

L. 

The so l id  curves are f o r  entry at 26,000 ft/sec and the dashed 

It is  evident that as o r b i t a l  speed is exceeded, 

angle, 



A closer inspection of the peak g's experienced at  overshoot 

i s  afforded on the right i n  figure 4 (actual ly  at  pullout, but 

essentially-peak values). 

encountered i n  an equilibrium glide following deceleration t o  

o r b i t a l  s p e d s  and is shown for reference. 

t o  i l l u s t r a t e  that increasing entry velocity brings about marked 

increase i n  peak g ' s  at overshoot, p r t i c u l a r l y  a t  l o w  L/D. 

much higher velocit ies,  the  peak g ' s  at  overshoot a re  sizeable even 

f o r  high L/Dj fo r  example, at 60,000 f t / sec  the  peak g 's  at  overshoot 

would approach 5 at values of L/D of 2 o r  so. 

cation i s  that i n  the  event of an emergency in which it would be 

desirable t o  avoid the  higher peak g ' s  near undershoot by entering 

nearer the  overshoot boundary, the peak g ' s  cannot be substant ia l ly  

reduced below those indicated without resor t ing t o  entry modes that 

generally involve skip. 

that would be experienced i n  the average entry between undershoot 

and overshoot lead t o  an in te res t  i n  the  al leviat ion i n  peak g that 

can be brought about by L/D. 

of secondary importance i n  vehicle choice, t u r n  i n t e re s t  toward an 

L/D at least as high as 1 because of the sizeable reductions i n  

peak g ' s  with increasing L/D that occurs i n  the  l o w  L//D range at over- 

shoot and at  any given value of entry angle between undershoot and 

overshoot. 

The dashed curve represents peak g's  

--_ - 
The s o l i d  curves serve 

A t  

The impr t an t  impli- 

Such emergencies and, i n  fact ,  t h e  peak g 

These considerations, although a t  best  

A l l  of the resu l t s  i n  figure 4 a re  fo r  entry at (L/Djmsxj now- 

ever, the  general. conclusions are essent ia l ly  the same for entry at -- 
- 

( re f .  3 ) .  
LmaX 

C 
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The width of the entry corridor between undershoot and over- 

shoot is  of in te res t  primarily from the standpoint of guidance re-  

quirements and f l e x i b i l i t y  of opera;tion. 

f o r  t h e  width of corridor as a function of hypersonic (L/D),. 

the left, corridor width for  entry mo&e U only is presented i n  terms 

Figure 3 gives some f e e l  

On 

of the difference i n  entry angle between undershoot and overshoot, 

AyE. 
B 

Increasing entry velocity is shown t o  reduce the  width of t h e  

corridor from about 10' maximum a t  o r b i t a l  entry speeds t o  about a 

2" m a x i m u m  at  46,000 zt/sec; the loss  i n  corridor width f r o m  entering 

rather  t h a n  (L/D),ax i s  re la t ive ly  small. A value of A7E at cLmax 

of about lo i s  generally considered t o  be the minimum acceptable 

without excessive demands on gdidance requirements. On t h i s  basis, 

entry by mode U has a velocity potential somewhat beyond 46,000 ft;/sec 

f o r  vehicles with (L/D),ax of about 1 or  greater.  

The advantages t o  corridor width i n  entering by mode M as com- 

pared t o  mode U a re  shown on the  right i n  f igure 5. Here the  corridor 

width is  given i n  terms of statute miles t o  afford some insight  into 

the re la t ion  of miles t o  

creases i n  corridor width can be real ized by resorting t o  mode M 

A7E (compare mode U curves). Major i n -  

provided hypersonic (L/D),, i s  i n  excess of about 0.3 o r  so. 

Figure 6 shows that the use of such a mode a l so  extends the  permiss- 

i b l e  entry velocity f o r  EL given L/D and specified corridor requirement, 

low L/D and extremely small corridor widths excepted. 

- -- _. 

The advantages t o  be gained from L/D aga in  d i rec t  attention 

toward an (L/D)max of about 1 o r  greater, although L/D as low as 
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1/2 cannot be ruled out for rode M on a corridor-width basis f o r  

velocit ies less than about 50,000 f t / sec  or so. 

Relation of ( L/D)mx t o  C h X  an& t o  L/D at C& 

An a t t rac t ive  goa l  i n  the design of a multipurpose vehicle 

would be the capabili ty of having high CL and good L/D at high CL 

simltaneously.  This would afford the advantages of operation at 

high CL (for example, reduction of heat loads) while avoiding undue 

compromise t o  l a t e r a l  ranging result ing from a possible major re- 

daction i n  L/D caused by operation at high CL. The extent to which 

this goal may be realized i n  practice gives r i s e  t o  an i n t e re s t  i n  

the rekition of ( L / D ) ~ ~  t o  c h x  capability, m d  the relat ion of 

(L/D)= t o  L/D capabili ty a t  C h .  Figure 7 gives some i n s i g h t  in to  
r _  

. .  
these relations.  

the  top. 

The effect  of (L/D)max on CbX is  considered a t  

An estimate labeled Newtonian envelope i s  shown along with 

a compilation of experimental data for a variety of entry vehicle 

shapes. 

good CbX capability. 

The main p i n t  t o  n o t e  is that the estimate and the  experimental data 

These data are res t r ic ted  t o  those shapes showing re la t ive ly  

(See ref. 3 for a more complete picture.  ) 

di rec t  in te res t  toward an (L/D),ax near 3/4 o r  ,greater. 

(L/D)max of 3/4 i s  par t ly  r e a l i s t i c  and part ly  deceptive i n  that at 

these and lower values of (L/D)max, the vehicles a re  chunky and t e n d  

The peak near 

t o  shift the more r e a l i s t i c  reference area from planform area (as 

used here) t o  base area. 

3 regime would not al ter the  conclusion . 
However, use of base area i n  the low (L/D)- 
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i s  shown at  the bottom ’ilhe effect  of ( L / D ) ~ ~  on a t  c L n z X  

of figure 7. 

toward as (L/D)ITaX of about 1 or greater when considered solely i n  

the lighr, of havhg gocd L/D po-czt ia l  a t  CL-. 

i f  a high-C, roll-nodulation mode of entry i s  employed, in te res t  

is confired t o  an ( L / D ) = ~  i n  the v ic in i ty  of 1, since it would be 

d i f f i c u l t  t o  j u s t i fy  the penalties fo r  building i n  a high hypersonid 

(L/D),ax capabili ty that would not  be used. 

Heat io  g 

The experimental data and  the  est imte’  direct  in te res t  

’ 

On the  other hand, 

A multipurpose vehicle as considered herein is faced with 

the poss ib i l i ty  that radiative hexking may have a major contribution 

t o  the heat input when the entry velocit ies are considerably i n  ex- 

cess of o r b i t a l  speed. Figure 8 i l l u s t r a t e s  t he  relation of hyper- 

sonic ( L / D ) = ~  and entry mode t o  maximum stagnation-point heat ra tes  

and heat loads fo r  both radiative and convective heating a t  entry 

veloci t ies  of 36,000 and 46,000 f t /sec.  

heating a t  near-orbital  speeds where the input i s  essent ia l ly  a l l  

convective may be found i n  reference 3 .  The r e su l t s  shown herein 

assume a loading W/S 

wise specified. 

is  approximately twice that for entry at  C b ,  and i n  each case the  

value of W/SCL is  assumed t o  be invariant with (L/D),ax. 

i n  f igure 8 a r e  f o r  entry a t  ( L / D ) = ~ .  

Related information on the  

of 35 and a nose radius of  1 foot unless other- 

The value of W / S C ~  corresponding t o  entry a t  (L/D)- 

The resu4ts 

Entry mode M is seen t o  prodwe heating r a t e s  ( top of f igure)  

great ly  i n  excess of those for entry mode U fo r  both radiative and 

convective heating. Increasing (L/D)- accentuates t h i s  difference. 
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e f fec t  upon stagnation-point heat load is  given i n  f igure 10. 

c l e  with (L/D)max of 1 i s  assumed t o  be entering by mode U along the  

A vehi- 
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No heating ra te  resu l t s  e r e  shown for overshoot, but they f a l l  well  

below the undershoot values. 

The bottom of the  figure shows t h a t ,  i n  undershoot, entry 

mode M reduces the convective heat load s l igh t ly  but increases the  

radiative,  markedly so a b  46,000 f t /sec.  

load i s  seen t o  be dominantly convective; a t  36,000 f t / s ec  the radia- 

I n  overshoot, the  heat 

t i v e  contribution i n  overshoot is too small t o  be indicated. 

Figure 9 sums the  radiative and convective contributions shown 

i n  f igure 8 t o  obtain t o t a l  heat ra tes  and t o t a l  heat loads. 

a t  low (L/D)max, the t o t a l  hea t ' ra tes  i n  undershoot a re  seen t o  be 

much higher for mode Mthan for  mode U. Similarly, the t o t a l  heat 

loads f o r  mode M exceed those f o r  mode U. 

portance at 36,000 f t / sec  and lower since the overshoot condition 

c a l l s  for  a higher design heat load. 

Except 

This is  not of major i m -  

However, at 46,000 f t /sec,  t he  

undershoot t o t a l  heat load f o r  mode M exceeds the overshoot t o t a l  heat 

load at  other than low (L/D),ax. 

e a r l i e r  fo r  mode M come at the expense of a more severe heating environ- 

ment whose e f fec ts  upon heat protection, weight, etc.,  must be weighed 

against  the necessity for  the increased corridor width. 

of figures 8 and 9 also serve t o  indicate that from a heating stand- 

po in t ,  high (L/D),ax i s  not a e t t r ac t ive  aFpoach t o  a vkltipurpose 

vehicle. 

Thus, the wider c o r r i b r s  shown 

The contents 

The heating resu l t s  presented thus far have deal t  with entry at 
(I 

(L/D)-. Entry at  high CL i s  a lso of: in te res t .  ~n example of t'ne 



Gvershoot boundary, and  the entry velocity is varied between orbi-  

t a l  velocity and the inaximum permissible e n t r y  velocity (zero corr i -  

dor width and 12g at overshoot), Entry a t  high CL is  seen t o  reduce 

the radiative as well as the cowective contribution, end t o  d e h y  

~ 

-= I 

of veloci t ies  suf f ic ien t ly  high t o  be of in te res t  i n  planetary missions 

( f ig .  2 ) ,  yet not so high as t o  reduce the  corridor width below mini- 

the onset of  major radiative input t o  higher velocit ies.  The re- 

dx t io r !  i n  the convective a d  radiative iriputs is  associated with 

t 

bath the reduced W/SCL and t he  reduced L/D; hcwever, the reduction E 
I 

i 

i 
I .  
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vehicles as a r'mction of  entry velocityj .  

a hemisphere with a short  cylindrical afterbody; the L/D = 1/2 

vehicle i s  of tie A w l l o  type; md the L/D = 1 vehicle is  a highly 

The L/D = 0 vehicle is 
a 

swept delta-planform l i f t i n g  body 7ntering at  high CL. 

resu l t s  a re  indicative of the  reduction i n  the importance of the 

The overal l  

rediative input as nose radius is decreased and high i i f t  is  employed. 

Heat B o t e  c t  ion 

Figure 12 presents a portion of the heating resu l t s  i n  t he  

form of heat load versus heat ra te  so as t o  es tabl ish i n  a general 

way the relat ion of the stagnation point convective heating t o  the 

m t e r i a l s  picture. It is sufficient t o  use entry mode U for  t h i s  

purpose, since mode M produces a more severe environment. 

end of each shaded band corresponds t o  entry at 26,000 f t / s ec  and the  

The l e f t  

right end t o  46,000 f t /sec.  

t'nese data bands i s  that suggested by Roberts4 f o r  approximating the  

limits t o  which metall ic shields can operate; f o r  example, the re- 

2 fractory metals can be expected t o  cope with some kl t o  50 Btu/ft /sec, 

The boundary below and t o  the l e f t  of 

-- 

and a copper heat sink approach would be so heavy i n  handling heat 

loads greater than about 10,000 Btu/ft 2 that it would probably not be 

feasible .  

handling essent ia l ly  a l l  heat inputs covered by t h e  figure, although 

Ablation materials o f  one type o r  another are capable of 

they a r e  not the  best approach thoughout. 

protection technology is such that  barring unforeseen developments, 

ablation m t e r i a l s  w i l l  be the most l ike ly  choice f o r  the stagnation 

The current s t a t e  of heat 

region of a multipurpose vehicle. 
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Of greater concern, perhaps, than the heating of the nose or 

stagnation region i s  the heating o f  the  major s-uface areas of the 

vehicle. Es t imtes  of the maximum radiation equilibrium temperatures 

(emissivity of 0.85) that would e x i s t  along the streamwise center- 

l i n e  of a delta-planform l i f t i n g  'mdy with (L/D),;ax = 1, and entering 

a t  C h  by mode U, a r e  shown in the left-hand portion of figure 13. 

-.. 
i 

: ,' 

. '1 

!\ 

P 

', c 
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Oniy t+ convectlve i n p t  i s  considered. The h t c h e d  bands 

isdiczte  the range of temperatures t o  be expc ted  on the lo-r 

s7Jrface between undershoot ( top  of band) and overshoot (bottom of 

'cand) for the  veloci t ies  indicated. 

only a few hundred degrees i n  progressing 20 f ee t  rearward from 

Xote tilat there is  a drop of 
8 

the  tangency p i n t  of the surface with the hemispherical nose. 

The curves showing the  rapid decay i n  temprature  with distance 

rearward a re  fo r  the upper surface centerline and the condition of 

overshoot. 

they should give some f e e l  f o r  the near-minimum temperatures t o  be 

These estimates a re  subject t o  greater uncertainty, but 
-- . 

expected on- the  vehicle. 

In the  right-hand p r t i o n  of  the  figure i s  given the status 

or' the  l i f e  of coated refractory metal sheet as summarized by 

Yathauser . The different  curves represent different  refractory 5 

metals; it i s  not  essent ia l  t o  o u r  pu rpse  t o  ident i fy  each but 

they include tungsten, tantalum, m,olybdenua, and columbium, and 

they represent a generally optiziistic average of t e s t  information. 

The broad resu l t  i s  t h a t  present-day coatings can provide protection 

under continuous expsure  of at l e a s t  1 hour at 3000' F to 100 hours 

at  2500° F, and that an order of magnitude or greater decrease i n  

! 

. .  
! 

coating l i f e  i s  obtained under cyclic expsure  conditions. 

serious degradation under cyclic temperature expsure  r e f l ec t s  

This 

I 

di rec t ly  on the reusabi l i ty  of refractory metal compients i n  entry 

vehicles. Addedto h thause r ' s  compilation i s  a band indicating a 

probable improvement i n  the picture from future coatings and/or 

ceramics. However, t h i s  hoped-Tor g a i n  has been promisory for several  
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years EOW, and k;as not yet been realized for  sheet-type application. 

in6ications a re  that i ts  achievesent ~511 l i ke ly  be accompnied by 

short m t e r i e l  l i f e  o r  inherent erosion, thereby inferr ing refur- 

bishment a f t e r  each entry f l i g h t  an6  i n  t h i s  respect m u l d  require 

a refurbishing technique somewhat a k i n  t o  that f o r  a surface pro- 

tec ted  by ablation m t e r i a l .  

A cowarison of the  two sides of figure 13 shows that methods 

i of heat protection other than refractory xe ta l s  will be required over 

much of  the surfece area of an entry vehicle i f  it i s  t o  have the 

prime requis i te  of multipurpose capability, i. e., good growth poten- 

t i a l  i n  entry velocity. 

the surfzce temperatures that might occur at the  higher veloci t ies  has 

been neglected.) A t  t h i s  tirce, a refurbishable ablation covering 

eppears t o  of fe r  the best  heat protection approach f o r  the m u l t i -  

purpose vehicle concept. A desirable goal i s  refurbishment by a 

technique t h a t  lends i t s e l f  t o  use  of  coverings of different thickness 

as mission requirements may dictate.  

a l so  be able t o  capi ta l ize  readily on new and more e f f ic ien t  ablation 

materials as they are  developed. 

appears t o  be wi th in  the capability of current technology; refurbish- 

able eblation shields have already performed successfully i n  unmanned 

b a l l i s t i c  entry. 

(Bear i n  mind that any radiat ive input t o  

Hopefully the technique would 

Refurbishment fo r  l i f t i n g  vehicles 

The effect  upon vehicle aerodynamics of t he  shape changes that 

accompany ablation m i g h t  be an area of concern f o r  vehicles that are 

f o r  the most part ablation-protected. However, f o r  vehicles with low 
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t o  moderate L/D tha t  do not involve overly small leading-edge radii, 

nor invade the upper hyperbolic velocity regime, preliminary exami- 

nations indicate that adverse effects can be largely circumvented 

through appropriate design. 

of "hinge-line freeze" from possible downstream deposition of' 

ablation products. 

The s y e  remarks apply t o  the  question 

A s  a f i n a l  comment on the heat-potection picture, much re-  

m i n s  t o  be learned about the performance of a l l  thermal protection 

schemes during prolonged exposure t o  space environment. 

mountable problems have been uncovered for the more promising approa- 

cdes outside of those created by the  i n p c t  of meteoritic par t ic les .  

I n  t h i s  connection, the "ream-and-plug" repair  technique currently 

used on &lation shields appears t o  of fe r  a re l iab le  solution f o r  

these m t e r i a l s .  

No i n s u r -  

An equally promising technique f o r  repairing the  

damge t o  the t h i n  coatings that prevent oxidation of the higher- 

temperature refractory metals i s  not yet in hand. 

Weight of Entry Vehicles 

Over the  past few years, a number of system studies have been 

=de of entry vehicles by various industrial organizations. Much 

of t h i s  information i s  of a proprietary nature, o r  c lass i f ied.  How- 

ever, some indications of the  resul ts  of these studies can be pre- 

sented herein i f  confined to  a form that respects the  in te res t s  of 

t h e  source. 

pi' :.tiom that follow are  Eo t  ideatif  ied. 

For these reasons, the sources of the data i n  t he  corn- 

I 

f 
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Fig=? 14 presents the r e s u i k s  of a i te ra ture  survey of 

ectry vzhicle system studies. 

vehicles and 1 t o  14 day missions, with entry a t  o r  near o r b i t a l  

s p e d .  

entry vehicle weight a t  f i n i t e  L/D t o  that at L/D = 0, i. e., 

.%e studies encompass 1 t o  3 man 

J-t the top  is  shown the  variation i n  the  r a t i o  of t o t a l  

K/GJo. "he spread i n  the  band formed by the  &ta a t  any value of 

( L / D ) ~ ~ ~  is  f a r  l e s s  an effect  of t?; crew s i z e  and mission time 

vzriables t h a n  a ref lect ion of differing vehicle types and differ ing 

s t ruc tu ra l  azd equipment weights. While a l l  studies support the 

general indication of increasing weight with increasing (L/D)-, 

data frorn most of the  more recent studies fall i r  the  lower part  of 

b 

t h e  b t a  band; t h i s  is par t icular ly  t rue  a t  the lower values of 

(L/D)rrax' 

The bottom half of f igure 14 gives the variation of the r a t i o  

of payload weight t o  t o t a l  vehicle weight. !?he quantitative values 

z r e  not overly important since these a re  dependent on w h a t  one defines 
3 

as payload. 

it ref lec ts  the drop i n  payload efficiency with increasing (L/D)=. 

The t rend o f  the daka is  the important feature i n  that 

Following t h i s  survey o f  the l i t e r a tu re  an  attempt was made t o  

get  a more refined picture of the variation of  W/Wo with (L/D)-. 

The resul ts  of these weight estimates are shown i n  f igure 12 together 

with sketches of the vehicles involved (see r e f .  3 fo r  additional 

information). It i s  doubtful t h a t  the values of W/Wo can be decended 

more closely t h a n  the  height of t he  symbol bars; however, t he  overal l  

r e su l t s  a r e  be l i eved to  convey a reasonably accurate picture of the  

r e l a t ive  p s i t i o n s  of the different  vehicles. 
21 

I 
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For r e s u l t s  at v = 26,000 ft/sec, two prirrary heat E 
protecticn zrtbclds were corxidered, ablat ive and radiat ing 

ze t a l l i c .  

the l i & t e s t  2ppoach; the des ipa t ion  

choice ES not clear ly  indicated,bct t e d e d  toward the  ablative.  

The method i n a c a t e d  for ea& vebLcle was found t o  ,e 

A CJ R infers  t h a t  the 

%;ne general reducticn i n  the values of W/Wo with increasing crew 

s i z e  is fo r  the most part sinply a ref lect ion of the larger  values 

of 

on the variation of W/WO with (L/D)mx. 

requirenentsQpear i n  most studies of future  manned missions; the  

Wo, however, crew s ize  b e s  appear t o  have a signif icant  e f fec t  

In t h i s  regard, multimn 

upper range of in te res t  currently centers on about 12 men. A 

capacity of t h i s  order istkerefore believed t o  be a desirable 

feature in a multipurpose vehicle, together with the f l e x i b i l i t y  

t o  interchange crew s i ze  with cargo or equipment as the  mission 

requires. If a 12-man capacity i s  assmed, these resu l t s  indicate 

t h a t  values of (L/D)mx of abmt 1 or s l igh t ly  higher can be real ized 

vithout z j o r  increase i n  veight. 

The lower prt of figcce 15 ?resents resu l t s  for an entry 

All vehicles use ablation as the  primary velocity of 46,000 f t /sec.  
- 

heat protection approach. 

toward conical types since they a r e  be l i eved to  be more representative 

of types suitable for t h i s  veiocity 

reasons given ea r l i e r  it is dcubtI^ui Y m t  veYiLcles w i t h  (L/D) 

t h a n  abo7i-L 0.5 will 3e considered f o r  m o e d  entry at this  veiocity. 

With t h i s  i o  micd, the weight p n a l t y  f o r  increasing (L/D) 

about 1 does not appear t o  be overly large. 

The low L/D vehicles selected here tend 

(e.g., see refs. 1 and 6). For 

less max 

t o  max 
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J-S a zCiJmct t o  these exanicatiors 02 entry vehicle weight, 

I ' ibwe 16 presents resu l t s  of  a lLtertit-xrz search corducted with the  

a i o  of exipsicg effects  of entry velocity and heat protection 

epproach on entry vehicle weight. At the  botton i s  shown the 

r a t i o  of t o t a l  vehicle wei&t f o r  a radiating metall ic approach 

t o  that f o r  ~II 211 or  nearly a l l  ablat ive approach. 

expected, the t rend i n  moving toward higher entry speeds i s  t o  

s h i f t  the advantage t o  the ablative approach. 

by the wavy Enes,  the higher the (L/D)mX, the higher the entry 

veloci-cy for which the r a d i a t i n g  metall ic approach renains competitive. 

Yilese resu l t s  a re  res t r ic ted  t o  s. m x i m w  longitudinal ranging 

&wing entry of: 10,000 miles. 

p u r p s e  vehicle, longer ranging would s h i f t  the picture i n  a direc- 

t ion  sonewhat more favorable t o  the radiating approach. 

As would be 

A s  roughly indicated 

3hile this  seems ample for a m u l t i -  

A t  the top of the  figure i s  shown the increase i n  weight 

associated with increasing velocity f o r  ablation-protected vehicles 

h a v i n g  (L/D)mX 1. The i idicat ion tha t  the  w e i g h t  penalty f o r  

increased velocity potent ia l  i s  within the realm of p rac t ica l  con- 

siderztion i s  a t  l ea s t  reassuring i n  the concept of a multipurpose 

vehicle. 

Lateral  a n g i n g  

No attemIJt w i l l  be made t o  sumnarize the many facets  of l a t e r a l  

ranging a-c superc i rcubr  entry - , ~ l s c i t i e s .  

look br ie f ly  a t  the  l a t e r a l  ranging associated with entry a t  circular 

velocity by recognizing that increased entry velocity appears t o  of fe r  

~ f ;  c p e ~ s  sufficientr. il.0 
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GG o u t s t m d b g  d2fr"iculty i n  r e x n i n g  a prescribed landing point, 

and generally ircreases the accessible ha t i i n@;  area (e.g., see 

re fs .  2 erd 7 ) .  

d2rectl-y from reference 8 i z  which,rctmo from a sear-earth o rb i t  

is  trer;l.ccd. The assumed w.lue of W/CDS i s  203 lb/ f t  j however, 

the  resu l t s  are rela-ively insensit ive t o  this _parameter, a t  l e a s t  

Tfie w t e r i a l  +:-at i s  presented herein is  taken 

2 

to as 2.0:~ as :J/CDS = 75. The ectry mcde i s  essent ia l ly  mode U. I 

At ?;'ne top of 3 g u e  17 i s  shown the  m i m u  l a t e r a l  range 

aad b n a s o n i c  L/D required for  quick retwr! t o  a specified l and ing  

s i t e .  

decision t o  enter and i n i t i a t i o n  of entry of l e s s  than one orbi t .  

Tke z b i l i t y  t o  reach any point on the globe once each orb i t  from 

any o rb i t  inclination i s  seen t o  require a hy-personic L/D of about 

3.6. 

orb i t  inclination and  l and ing  site require considerably less  L/D. 

If we are  sa t i s f i ed  with accepting reasonable delay times i n  

By quick r e t u n  is  meant a return wich a delay time between 

Cn t'ne other hand a variety of i i t e r e s t i n g  combinations o f  

c rb i t ,  the hypersonic L/D required can be reduced considerably. 

examzle, consider the  polar orbi t  which is  o f  i n t e re s t  because of the  

complete ear th  coverage it affords. 

of f igure 17 shows tha t  a vehicle with a hg.Fers0ni.c L/D of about 0.9 

can reach any point on the U. S .  m a b l c n d  twice daily, while an L/D 

of about 0.7 assures at  l ea s t  crice-a-dq return. b 

For 

I n  t h i s  case, the bottom part  

The relat ion between d e l a y  time and hypersonic L/D required t o  

r-eturn t o  a specified landing s i t e  is  a strong function of o rb i t  

inclination and involves discontinuities, as i l l u s t r a t e d  i n  f igure 18 
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fo r  the  c8se of return t o  Eci-dzrk A i r  Z'o-rce Ease. In t h i s  e m p l e ,  

as L/D is  decreased the  equatorial o rb i t  i s  ei ther  a quick-return 

or no-return proposition, whereas the  polar orbi t  goes from quick 

return, t o  a steady increase i n  holding time, to a discontinuous 

jmp  i n  holding time. 

t i c s  of each of these l imiting orbi ts .  

0 The 30 o r b i t  shows some of the characteris- 

Other examinations show 

that ar! L/D of about 1 w i l l  provide a t  Least once-a-day return to 

%he U. S. mainland from an o r b i t  of  any inclination that passes over 

t h e  mainland (i. e. , for the  lowly inclined orb i t s  any spot within 

t h e  southern half of the U, S. would be accessible, and as orb i t  

inclination increases the accessible area increases u n t i l  the en t i re  

U. S. mainland is  accessible f o r  o rb i t s  inclined greater than about 

3 7 O  1 
A broad look enconpassing the areas already discussedtends 

t c  . l i rect  attention toward entry vehicles wi th  hypersonic ( L/D),ax 

i n  the v ic ic i ty  of one. - Unless quick return c a p b i l i t y  can be shown - 

t o  be an essent ia l  feature of most future missions, which does 

not seem t o  be the case, t h i s  same class or" vehicles appears t o  

have adequate range capability. 

return i s  of decreasing interest  as ectry velocity i s  increased, 

since the l a t t e r  usually infers missions that are  of  longer duration 

and more remote from earth. 

For a multiprpose vehicle quick 

Some mention of the use of space propulsion or air-breathing 

propulsion to improve lateral ranging seems i n  order. 

former appears of  in te res t  o n l y  for smll ranging requirements and 

Briefly, t he  

! 
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vehicles having low hypersonic L/D. 

fronted with a dilemma: 

f o r  entry vehicles occurs for -the lower L/D vehicles, but i n  general 

the lower L/D vehicles do not len; themselves t o  good i n l e t  per- 

formance. 

breathing propulsion i n  application t o  entry vehicles. 

event neither space propulsion nor  air-breathing propulsion seem 

essent ia l  t o  a multipurpose vehicle having xmderate hypersonic L/D 

capability. 

The l a t t e r  appears t o  be con- 

t h e  primary in t e re s t  i n  range augnentation 

Further study i s  needed t o  c l a r i fy  the ro le  of air- 

In any 

Conventional Landing 
2 

Low-g impact at l a n d i n g  i s  desirable f o r  an  entry vehicle in- 

tended for reuse. Yareover, once hypersonic L/D as high as about 1 

is  established as a requiremat f o r  en entry vehicle, there  is  the 

poss ib i l i ty  of having conventional landing capabili ty without major 

w e i g h t  penalties o r  severe compromises t o  hypersonic performance. 

It is of i n t e re s t  therefore t c  see w h a t  conventional landing m y  

require i n  subsonic performance. 

is  considered in figure 19 where a summary of landing approach 

One aspect of the landing problem 

c r i t e r i a  ( ju s t  pr ior  t o  flare) derived from p i lo t s '  evaluations i s  

presented i n  terns of wing loading and subsonic L/D. These resu l t s  

a r e  fo r  a CL of 0.2, which i s  representative of the  lower values of 

C 

n5ze that everything is relat ive i n  defining the  zones, p o r t  fair, 

encountered a t  t h i s  point i n  t he  landing approach. One must recog- L 

and good; the boundaries between the zones are fuzzy at best .  
------._ 
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Nevertheless, these resu l t s  show logical  trends and should be 

aCequate f o r  approxizating desirable objectives. For example, a 

multipurpose 12-nan entry vehicle with hypersonic L/D of about 1 

would l ike ly  have a wing l c a d i n g  no; l ess  than 35, and probably higher; 

i n  this case a subsonic L/D of about 4 or Eore would be a desirable but 

not necessarily an essent ia l  goal. 

The r a t io  of C at  touchdown t o  CL a t  subsonic (L/D),ax is  also L 
important i n  determining the ease with which the  landing f l a r e  may 

be accomplished. Similar evaluations of t h i s  cr i ter ion show a 

preference f o r  a subsonic L/D of about 4 or greater. 

The ava i lab i l i ty  of a modest amout of rocket th rus t  augmenta- 

t ion  appears t o  of fe r  a t t rac t ive  poss ib i l i t i es  fo r  increasing the  

effect ive subsonic L/D during appoach t o  Landing, and  for  executing ' 

a go-around i f  required. 

increase ranging potent ia l  beyond that involved i n  a go-around soon 

However, the use of rocket propulsion t o  

involves major weight penalties. 

schemes for  increasing subsonic L/D a t  small expense i n  weight de- 

serves consideration . 

The potent ia l  of variable-geometry 

9 

(L/D),ax and Volme 

The foregoing discussion raises the  question: Is conventional 

landing at ta inable  without severe compromise t o  volumetric efficiency? 

Or?e facet  of t h i s  question is  considered i n  f igure 20 where a litera- 

ture survey o r  experimentai s tu i i ies  ui fixed-geciiietry eiltry vehicles 

gives a f e e l  for  the  i n t e r p h y  of hy-personic and subsonic (L/D),;ax 
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w i t h  v o l x e t r i c  efficiency. The boundaries decoting constant values 

of t he  volumetric efficiency parameter a r e  maxim i n  the following 

sense: 

it i s  highly unlikely that it coulq move up o r  t o  the r ight .  

foAm of the boundaries i n  the t ransi t ion from horizontal t o  ve r t i ca l  

i s  open t o  question. 

(L/D),, comes at greater expense t o  volumetric efficiency than 

does subsonic (L/D)max. 

l and ing  conventionally i s  the  indication that a fixed geometry entry 

vehicle with hypersonic (L/D)- near 1 is  capable of achieving sub- 

sonic ( L / D ) = ~  i n  excess of 4 while retaining good volumetric e f f i -  

a given valued boundary could move down o r  t o  the l e f t ,  but 

The 

The overall  r e su l t s  show tha t  hypersonic 

O f  particular in te res t  with regard t o  

ciency. Other examinations have indicated that reasonably good 

volume dis t r ibut ion can be achieved i n  a vehicle that has these 

characterist ics.  

Concluding Remrks 

The areas touched upon i n  th i s  review demonstrate that the  

fac tors  influencing the  design of a multipurpose manned entry vehicle 

that is  capable of entry at  circular t o  moderately hyperbolic velo- 

c i t i e s  a re  numerous and varied, and OI? occasion lead t o  conflicting 

in te res t s .  

missions a re  needed before a well-founded recommendation can be made 

of the vehicle class that i s  >est  su i ted  for  multipurpose use, the 

While i n  some respects be t te r  iiefinitions of future  
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resu l t s  t h a t  have been presenteS! herein, when viewed i n  their  

ent i re ty ,  tend t o  draw attention toward vehicles having a hypersonic 

(L/D)max i n  the v ic in i ty  of one. 

manned entry vehicle appears t o  be technically feasible,  a t  l e a s t  

The concept of a multipurpose 

t o  the degree that such a vehicle merits f'urther consideration ' i n  

assessing how best t o  meet the requirements that future  manned 

space missions will place upgn entry vehicles. 
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